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Abstract. We study N = 1 supersymmetric U(N) gauge theory coupled to an adjoint scalar superfield
with a cubic superpotential containing a multi trace term. We show that the field theory results can
be reproduced from a matrix model whose potential is given in terms of a linearized potential obtained
from the gauge theory superpotential by adding some auxiliary non-dynamical field. Once we get the
effective action from this matrix model we could integrate out the auxiliary field getting the correct field
theory results.

1 Introduction

Recently it has been proposed [1] that the exact super-
potential and gauge coupling for a wide class of N = 1
supersymmetric gauge theories can be obtained using per-
turbative computations in a related matrix model. Given
an N = 1 SYM theory the potential of the corresponding
matrix model is given in terms of the gauge theory super-
potential. Even more interestingly, the non-perturbative
results of the gauge theory can be obtained from just planar
diagrams of the matrix model without taking any large N
limit on the gauge theory side. This conjecture is based on
earlier works [2–6] and has recently been verified perturba-
tively using the superspace formalism [7] or anomalies [8,9].
Further developments can be found in [10–14].

To fix our notation, let us consider N = 1 U(N) su-
persymmetric gauge theory coupled to a chiral superfield,
φ, in the adjoint representation with the following super-
potential:

W (φ) =
n+1∑
k=1

gk

k
Tr
(
φk
)

(1)

for some n. To get a supersymmetric vacuum one needs to
impose D- and F-term conditions. Taking φ to be diagonal
would satisfy the D-term and for the F-term we need to
set W ′(φ) = 0. This equation, in general, has n distinct
roots ai and thus W ′(x) = gn+1

∏n
i=1(x − ai). Therefore

by taking φ to have eigenvalues ai with multiplicity Ni,
the gauge symmetry U(N) is broken down to

∏n
i=1 U(Ni)

with
∑n

i=1 Ni = N .
If the roots ai are all distinct, the chiral superfields

are all massive and can then be integrated out getting an
effective action for the low-energy theory. The chiral part of
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the low-energy effective Lagrangian may be written as [9]

Leff =
∫

d2θ Weff +c.c. , Weff = f(Sk, gk)+
∑
i,j

τijωαiω
α
j ,

(2)
where Sk = − 1

32π2 Tr WαiW
αi and ωαi = 1

4π Tr Wαi with
Wαi being the gauge superfields of U(Ni) gauge group.

The main point in the Dijkgraaf–Vafa proposal is that
the chiral part of the effective action can be given by a
holomorphic function FG(Sk), such that

Weff =
n∑

i=1

Ni
∂FG

∂Si
+

1
2

n∑
i,j=1

∂2FG

∂Si∂Sj
ωαiω

α
j . (3)

Now what is left to be determined is the function FG. In fact
it is the goal of the Dijkgraaf–Vafa proposal to identify FG

as the free energy of an auxiliary non-supersymmetric ma-
trix model whose potential is the same function W which is
the superpotential of the four dimensional supersymmetric
gauge theory. The matrix model free energy is given by

e
1

g2
s

F0 =
1

Vol(U(M))

∫
Dφ e(− 1

gs
W (φ)) , (4)

where φ is an M × M matrix belonging to U(M). For
the model we are considering one needs to take φ in such
a way that the U(M) symmetry is also broken down to∏n

i=1 U(Mi) with
∑n

i=1 Mi = M . Moreover one should
also identify Si = gsMi. Taking the large M limit one can
compute F0 order by order using only planar diagrams in
the matrix model perturbation theory. Now the prescrip-
tion [7] is that, for example, the lth instanton contribution
to the effective action can be reproduced from a pertur-
bative contribution with l loops in the auxiliary matrix
model. In fact, having the matrix model free energy the
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effective superpotential is obtained:

Weff =
n∑

i=1

(
Ni

∂F0

∂Si
− 2πiτ0Si

)
, (5)

where τ0 is the bare coupling of the theory.
By now there are a huge number of papers devoted to

this proposal where only superpotentials with single trace
operators have been studied. Recently a superpotential
containing multi trace operators has also been considered
in [15] where the authors showed that taking naively W
with multi trace as the potential of the matrix model would
lead to an incorrect matrix model. By “incorrect” they
mean that one cannot reproduce the corresponding gauge
theory results, though the obtained matrix model could
be an auxiliary matrix model of some gauge theory which,
of course, is not what we started with. More precisely
it has been shown that although the diagrams surviving
the large M limit of the matrix model with a multi trace
potential are exactly the graphs that contribute to the
effective action of the field theory with the multi trace
tree level superpotential, one cannot compute the effective
superpotential of the field theory by taking a derivative
∂F0
∂S .

This problem can, of course, be solved [15] using the lin-
earized superpotential in the matrix model. In fact, starting
with a multi trace operator in the superpotential one can
linearize it using some non-dynamical background fields
Ai. Then the potential would contain only single trace op-
erators with Ai dependent coefficients. Once we find Weff
from the matrix model, we can integrate out the Ai fields
getting the correct gauge theory result.

It is the aim of this article to further study a superpo-
tential with multi trace operators. In particular we would
like to see whether the results of [15] can also be applied
to the cases where the gauge group is broken too. We note
that in [15] the authors have only considered the theory
with a quadratic multi trace superpotential for a situation
where the gauge symmetry remains unbroken. In fact, the
main result of this paper is to show that the procedure
works in the case with broken gauge symmetry as well.

For our purpose we shall study N = 1 U(N) SYM
theory coupled to an adjoint scalar superfield with the
cubic superpotential given by1

Wtree =
1
3

Tr
(
φ3)+

1
2

m Tr
(
φ2)+ λ Tr(φ)

+
1
2

g Tr(φ) Tr
(
φ2) . (6)

We will see that, using the linearized form of the super-
potential, one can reproduce the gauge theory results for
the cases with and without gauge symmetry breaking.

The organization of this paper is as follows. In Sect. 2
we will review N = 1 U(N) SYM theory with cubic single
trace superpotential. In Sect. 3 we will study the same the-
ory with a multi trace term added to the superpotential.

1 N = 1 supersymmetric U(N) gauge theory with cubic
single trace superpotential has been extensively studied, for
example, in [16–20]

Regarding the fact that this model can be thought of as a
deformation of N = 2 theory we will find the effective su-
perpotential using the factorization of the Seiberg–Witten
curve. In Sect. 4 we will reproduce the same field theory re-
sults using the linearized superpotential. In Sect. 5 we will
see how the corresponding matrix model can be treated.
The last section is devoted to our conclusions.

2 Single trace superpotential

In this section we shall review the N = 1 supersymmetric
U(N) gauge theory coupled to an adjoint scalar hyper-
multiplet with cubic superpotential containing only single
trace operators,

Wtree =
1
3

Tr
(
φ3)+

1
2

m Tr
(
φ2)+ λ Tr (φ) . (7)

Taking φ diagonal one just needs to set W ′(φ) = 0 to get
the supersymmetric vacuum, and therefore the derivative
of the superpotential can be recast to

W ′(x) = (x − a1) (x − a2) , a1,2 = −m

2
± 1

2

√
m2 − 4λ .

(8)
In general we can take φ to have eigenvalues a1 or a2
with multiplicity N1 and N2, respectively. This will break
gauge symmetry to U(N1) × U(N2) with N1 + N2 = N .
Of course as a special case one can, for example, take
N2 = 0, which corresponds to the supersymmetric vacuum
without gauge symmetry breaking. In the following we shall
consider both cases.

2.1 Unbroken gauge symmetry

In this subsection we will review how the exact superpoten-
tial can be obtained for the case where the gauge symmetry
is not broken, using the factorization of the Seiberg–Witten
curve. In fact, the model we are interested in can be ob-
tained from N = 2 supersymmetric U(N) gauge theory
perturbed by a general tree level superpotential given by

Wtree =
n+1∑
k=1

1
k

gk Tr
(
φk
)

. (9)

A generic point in the moduli space of the U(N) N = 2
theory will be lifted by adding such a superpotential. The
points which are not lifted are precisely those where at
least N − n mutually local monopoles become massless.
These considerations are equivalent to the requirement that
the corresponding Seiberg–Witten curve has the factoriza-
tion [3]

P 2
N (x, u) − 4Λ2N = H2

N−n(x)F2n(x), (10)

where PN (x, u) is an order N polynomial in x with coeffi-
cients determined by the VEVs of uk. Λ is an ultraviolet
cut-off, H and F are order N − n and 2n polynomials in
x, respectively.
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The N − n double roots place N − n conditions on the
original variables uk. We can parameterize all the 〈uk〉 by
n independent variables αj . In other words, the αj then
correspond to massless fields in the low-energy effective
theory. If we know the exact effective action for these fields,
to find the vacua, we simply minimize Seff . Furthermore,
substituting 〈uk〉 back into the effective action gives the
action for the vacua.

In general the factorization problem is hard to solve, but
for the confining vacuum where all N − 1 monopoles have
condensed, there is a general solution given by Chebyshev
polynomials.2 In our case, we have the solution

〈up〉 =
N

p

[p/2]∑
q=0

C2q
p Cq

2qΛ
2qzp−2q,

Cp
n :=

(
n

p

)
=

n!
p!(n − p)!

, (11)

where z = 〈u1〉
N . We note, however, that the above proce-

dure is not the best one for comparison with the matrix
model result because there is no gluino condensate, S. To
compare the results, we need to “integrate in” [22] the
glueball superfield as in [17].

In the model we are considering the exact superpoten-
tial is found to be

Wexact = 〈u3〉 + m〈u2〉 + λ〈u1〉 , (12)

where

〈u1〉 = Nz , 〈u2〉 =
N

2
(
z2 + 2Λ2) ,

〈u3〉 =
N

3
(
z3 + 6Λ2z

)
. (13)

One can now “integrate in” the glueball superfield, S, get-
ting the effective superpotential as follows:

Weff = −NS

(
log
(

S

∆Λ2

)
− 1
)

(14)

−2N

3
S2

∆3

(
3 + 16

S

∆3 + 140
S2

∆6 + 512
S3

∆9

)
,

which is the exact effective action up to 5 instantons. Here
∆ =

√
m2 − 4λ.

Using the Dijkgraaf–Vafa proposal one will be able to
reproduce this result using a non-supersymmetric matrix
model with the potential given by (7). Since we are inter-
ested in the case where the gauge symmetry is not broken
one considers the expansion around a classical solution as
the following:

φ = a11M×M + ϕ , (15)

and therefore the potential of the matrix model reads

W (ϕ) = W (a1) +
1
3

Tr
(
ϕ3)+

1
2

∆ Tr
(
ϕ2) , (16)

2 This was worked out first by Douglas and Shenker [21]

where ∆ = a1 −a2. Here φ is an M ×M matrix belonging
to the U(M) group. One can now write the Feynman rules
and thereby evaluate the matrix model free energy order
by order using (4). Here we shall take a limit in which M
is large and keep the ’t Hooft coupling S = gsM fixed, and
thus only planar diagrams would contribute. In this limit
the free energy is found to be [16]

F0(S) =
1
2
S2 log

(
S

∆3

)
− S2 log

(
Λ

∆

)

+
2
3

S3

∆3

(
1 + 4

S

∆3 + 28
S2

∆6 + . . .

)
(17)

up to 4 loops. Using this expression the exact superpoten-
tial is given by (see also [3])

Wexact = −NS

(
log
(

S

∆Λ2

)
− 1
)

(18)

−2N

3
S2

∆3

(
3 + 16

S

∆3 + 140
S2

∆6 + . . .

)
,

which is in exact agreement with the field theory compu-
tation (14). As we see, the lth loop contribution to the
matrix model free energy is the same as the l instantons
contribution to the effective action.

2.2 Broken gauge symmetry

In this subsection we shall review the case where the gauge
symmetry is broken to two parts. In other words we consider
a matrix model where the U(M) group is broken down to
U(M1) × U(M2). To get such a matrix model we take

φ =
(

a11M1×M1 0
0 a21M2×M2

)
+
(

ϕ11 ϕ12

ϕ21 ϕ22

)
; (19)

here M1 + M2 = M . Moreover we will consider the large
M1 and M2 limit while keeping S1 = gsM1 and S2 = gsM2
fixed. The free energy of the corresponding matrix model
around this vacuum, up to 4 loops, is given by [16]

F0(S1, S2) = −1
2

∑
Si

2 log
(

Si

∆3

)

+(S1 + S2)2 log
(

Λ

∆3

)

+
1

3∆3

(
2S3

1 − 15S2
1S2 + 15S1S

2
2 − 2S3

2
)

+
1

3∆6

(
8S4

1 − 91S3
1S2 + 177S2

1S2
2 − 91S1S

3
2 − 8S4

2
)

+
1

3∆9

(
56S5

1 − 871S4
1S2 + 2636S3

1S2
2 − 2636S2

1S3
2

+ 871S1S
4
2 − 56S5

2
)
. (20)

Having the matrix model free energy the effective super-
potential for the case where the gauge symmetry is broken
as U(N) → U(N1) × U(N2) can be found using (5).
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This effective superpotential should be compared with
that obtained from a gauge theory computation. The gauge
theory result may be found using the factorization of the
Seiberg–Witten curve, though, in general, the factorization
procedure is difficult to do. Nevertheless for a special case
this can easily be worked out. For example consider the
SYM theory with gauge group U(3N) broken down to
U(2N) × U(N). Actually the analysis of this theory is
equivalent to SYM theory with gauge group U(3) broken
down to U(2) × U(1) where the effective superpotential
turned out to be [23] (see also [26])

Weff = u3 + mu2 + λu1 ± 2Λ3 . (21)

Of course this is not a suitable form for comparison with
the matrix model result. Actually to compare these two
results one can, for example, integrate out the S1 and S2
fields from the effective superpotential obtained from the
matrix model. Doing so, one can see that the matrix model
reproduces the correct result (21) order by order [3].

3 Multi trace superpotential

In this section we will study N = 1 U(N) SYM theory cou-
pled to an adjoint scalar superfield with a superpotential
containing a multi trace operator

Wtree =
1
3

Tr
(
φ3)+

1
2

m Tr
(
φ2)+ λ Tr (φ)

+
1
2

g Tr (φ) Tr
(
φ2) . (22)

To get the supersymmetric vacuum one needs to impose F-
and D-terms conditions. Taking a diagonal φ would satisfy
the D-term condition and for the F-term we need to solve
W ′

tree(φ) = 0. This equation has two solutions, b1,2, and
therefore in general φ can be taken to have eigenvalues bi

with multiplicity Ni. This will break the gauge symmetry
down to U(N1) × U(N2) with N1 + N2 = N .

To find the eigenvalues bi we note that the adjoint scalar
has been taken as φ = diag(b11N1×N1 , b21N2×N2), and thus
the superpotential is given by

Wtree =
1
3
(
N1b

3
1 + N2b

3
2
)

+
m

2
(
N1b

2
1 + N2b

2
2
)

+λ (N1b1 + N2b2)

+
g

2
(N1b1 + N2b2)

(
N1b

2
1 + N2b

2
2
)

, (23)

and therefore the F-term condition reads

λ + mb1 + b2
1 +

g

2
(
N1b

2
1 + N2b

2
2
)
+ gb1(N1b1 + N2b2) = 0 ,

λ + mb2 + b2
2 +

g

2
(
N1b

2
1 + N2b

2
2
)
+ gb2(N1b1 + N2b2) = 0 .

(24)

One can now solve these equations to find b1 and b2. The
solution is

b1 = − m

1 + N1g
− 1 + N2g

1 + N1g
b2, (25)

with b2 satisfying

b2
2 + m̃b2 + λ̃ = 0 , (26)

where

m̃ =

(
1 + 2N1 + N1N2g

2
)
m

(1 + (N1 + N2)g) (3 + N1N2g2) − 1
,

λ̃ =
2λ (1 + N1g)2 + m2N1g

(1 + (N1 + N2)g) (3 + N1N2g2) − 1
. (27)

Thus in general one can write W ′ (x) = (x − b1) (x − b2).

3.1 Unbroken gauge symmetry

By making use of the fact that this model can be obtained
from a deformation of N = 2 U(N) SYM theory by adding
the superpotential (22), the effective superpotential can
be obtained from the factorization of the Seiberg–Witten
curve. In fact, since the gauge symmetry is not broken the
factorization, for the confining vacuum where all N − 1
monopoles have condensed, can be obtained using Cheby-
shev polynomials. Indeed the solution is the same as (11).
Therefore the effective superpotential reads

Wexact = N
(
λ + 2Λ2 + gNΛ2) z +

mN

2
(
z2 + 2Λ2)

+
N

3

(
1 +

3gN

2

)
z3 . (28)

Setting B := Λ2 one can integrate in the glueball field S
as follows. First we find B in terms of S from the equation

NS = B
∂Wexact

∂B
= NB (m + 2z + gNz) , (29)

which can be interpreted as the Konishi anomaly [9, 24].3
Then we find z by solving

0 =
∂Wexact

∂z
(30)

= N

((
1 +

3gN

2

)
z2 + mz + λ + 2B + gNB

)
.

The effective action for the glueball superfield S can be
written as

Weff(S, g, Λ) = −S log
(

B

Λ2

)N

+ Wexact(S, g). (31)

To write the effective superpotential explicitly let us,
for simplicity, set λ = 0. In this case one finds the following
solutions for z and B in power series of S up to order O(S6):

B =
S

m
+

(2 + gN)2S2

m4 +
(10 + 7gN)(2 + gN)3S3

2m7

3 This might also be related to the non-perturbative relation
studied in, for example, [25]
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+

(
32 + 46gN + 17g2N2

)
(2 + gN)4S4

m10

+

(
1848 + 4044gN + 3018g2N2 + 769g3N3

)
8m13

×(2 + gN)5S5

z = − (2 + gN)2S2

m2 − (6 + 5gN)(2 + gN)2S2

2m5

−
(
16 + 16gN + 11g2N2

)
(2 + gN)3S3

m8

−5(6 + 5gN)
(
28 + 44gN + 19g2N2

)
(2 + gN)4S4

8m11

−
(
3072 + 9768gN+ 11940g2N2+ 6654g3N3+ 1427g4N4

)
4m14

×(2 + gN)5S5. (32)

Plugging these solutions into (31) one gets the effective
superpotential as follows:

Weff = −NS

(
log
(

S

Λ2

)
− 1
)

− N(2 + gN)2S2

2m3

−N(4 + 3gN)(2 + gN)3S3

3m6

−N
(
140 + 212gN + 83g2N2

)
(2 + gN)4S4

24m9

−N
(
128 + 292gN + 228g2N2 + 61g3N3

)
4m12

×(2 + gN)5S5 . (33)

As a check for this expression we note that setting g = 0
we will get the same result as in the single trace case.

3.2 Broken gauge symmetry

In this case, to get a closed form for the effective superpo-
tential we will consider the case where the gauge symmetry
U(3N) is broken down to U(2N)×U(N). Essentially this is
equivalent to the case with U(3) → U(2)×U(1) symmetry
breaking. To find the effective superpotential one can use
the factorization of the Seiberg–Witten curve. The corre-
sponding Seiberg–Witten curve for U(3) theory is given
by [27,28]

y2 =
(
x3 − s1x

2 − s2x − s3
)2 − 4Λ6, (34)

and the factorization we are interested in is(
x3 − s1x

2 − s2x − s3
)2 − 4Λ6 = H1(x)2F4(x) . (35)

Following [3] one finds

si = sclass
i ± 2Λ3δi,3 , (36)

where

sclass
1 = 2b1 + b2 , sclass

2 = −2b1b2 + b2
1 , sclass

3 = b2
1b2 .
(37)

Therefore the effective superpotential reads

Weff = uclass
3 +muclass

2 +λuclass
1 +guclass

1 uclass
2 ±2Λ3 , (38)

where

uclass
1 = 2b1+b2 , uclass

2 = b2
1+

1
2
b2
2 , uclass

3 =
2
3
b2
1+

3
b2
2 .

(39)

4 Linearized superpotential

4.1 Field theory description

Following [15] one can recast the superpotential to the form
with only single trace operators using auxiliary fields. In our
case we need two fields A1 and A2 and the superpotential
may be written as

Wtree =
1
3

Tr
(
φ3)+

1
2
(m + gA1) Tr

(
φ2)

+(λ + gA2) Tr(φ) − gA1A2 . (40)

Since A1 and A2 have no dynamics, one can integrate them
out and refine the multi trace superpotential (22). These
fields can be treated as constant background fields and
therefore the theory can be solved using a single trace su-
perpotential. This will generate an effective superpotential
W single

eff (A1, A2, S) as a function of the Ai and the glueball
superfield S. This function is the same as that in the model
without multi trace but with Ai dependent couplings.

For example in the case where the gauge group is not
broken the effective superpotential can be read from the
single trace result (12)

W single
exact (A1, A2) = 〈u3〉 + m′〈u2〉 + λ′〈u1〉 , (41)

where m′ = m + gA1, λ′ = λ + gA2 and

〈u1〉 = Nz , 〈u2〉 =
N

2
(
z2 + 2Λ2) ,

〈u3〉 =
N

3
(
z3 + 6Λ2z

)
. (42)

In the same way as in the previous section one can proceed
to “integrate in” the glueball superfield. To do this one sets
B := Λ2 and uses the equation

NS = B
∂W single

exact

∂B
= NB(m′ + 2z), (43)

to solve for B in terms of S. One can also find z by solving

0 =
∂W single

exact

∂z
= N(z2 + m′z + λ′ + 2B) . (44)

Now the effective superpotential for the glueball superfield
can be written as

W single
eff (A1, A2, S) = −S log

(
B

Λ2

)N

+W single
exact (A1, A2, S) .

(45)
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In fact, using the result of the single trace model (14) we get

W single
eff (A1, A2, S) = −NS

(
log
(

S

∆′Λ2

)
− 1
)

(46)

−2N

3
S2

∆′3

(
3 + 16

S

∆′3 + 140
S2

∆′6 + 512
S3

∆′9

)
,

where ∆′2 = (m + gA1)2 − 4(λ + gA2). One should also
add to this the −gA1A2 term, and the final answer for the
superpotential is

Weff(A1, A2, S) = W single
eff (A1, A2, S) − gA1A2. (47)

To get the final result for the effective superpotential with
multi trace operator we need to integrate out the Ai using
their equations of motion

∂W single
eff (A1, A2, S)

∂A1
− gA2 = 0 ,

∂W single
eff (A1, A2, S)

∂A2
− gA1 = 0 . (48)

These equations can be solved to find the Ai in terms of
the glueball superfield, and then plugging back the results
into (47) one can obtain the effective superpotential for
the theory with tree level superpotential (22). This should
reproduce the field theory result of the multi trace super-
potential (33). This can be seen as follows.

Suppose we have been able to solve (43) and (44) ex-
actly. Then we would have the exact form of z and B as
functions of S, A1 and A2:

B = B(A1, A2, S) , z = z(A1, A2, S) . (49)

Plugging these into the effective superpotential (47)
one gets

Weff(A1, A2, S) =
N

3
(
z3 + 6Λ2z

)
+

N

2
(m + gA1)

(
z2 + 2Λ2)+ (λ + gA2)Nz

−S log
(

B

Λ2

)N

− gA1A2. (50)

Thus the equations of motion of the Ai read

∂Weff

∂A1
+

∂B

∂A1

∂Weff

∂B
+

∂z

∂A1

∂Weff

∂z
− gA2 = 0 ,

∂Weff

∂A2
+

∂B

∂A2

∂Weff

∂B
+

∂z

∂A2

∂Weff

∂z
− gA1 = 0 , (51)

which are

0 =
gN

2
(
z2 + 2B

)− gA2

+N
∂B

∂A1

(
− S

B
+ (m + z + gA1)

)

+N
∂z

∂A1

(
z2 + (m + gA1)z + λ + gA2 + B

)
,

0 = gNz − gA1 + N
∂B

∂A2

(
− S

B
+ (m + z + gA1)

)

+N
∂z

∂A2

(
z2 + (m + gA1)z + λ + gA2 + B

)
. (52)

By making use of (43) and (44) we find

A2 =
N

2
(
z2 + 2B

)
, A1 = Nz . (53)

Now one has to plug these solutions into the effective su-
perpotential to get the final result which is, of course, what
we have found in the previous section, (33).

In the case where the gauge group is broken to two
parts we can follow the same procedure. To be specific
we consider U(3) → U(2) × U(1) where we will be able
to write a closed form for the exact superpotential. More
precisely, using the field theory result in the single trace
case the effective superpotential reads

Weff(A1, A2) = (λ + gA2)u′class
1 + (m + gA1)u′class

2

+u′class
3 ± 2Λ3 − gA1A2 , (54)

where

u′class
1 = 2a′

1 + a′
2 , u′class

2 = a′2
1 +

a′2
2

2
,

u′class
3 =

2a′3
1

3
+

a′3
2

3
± 2Λ3 , (55)

with a′
1,2 = −m′

2 ± 1
2

√
m′2 − 4λ′. We should now show

that upon integrating out the auxiliary fields A1 and A2
the obtained effective action is the same as that in the field
theory computation with multi trace operator (38). To see
this, we note that

∂Weff

∂A1
= g

(
u′class

2 − A2

)

+

(
(λ + gA2)

∂u′class
1

∂A1
+ (m + gA1)

∂u′class
2

∂A1
+

∂u′class
3

∂A1

)

= 0,

∂Weff

∂A2
= g

(
u′class

1 − A1

)

+

(
(λ + gA2)

∂u′class
1

∂A2
+ (m + gA1)

∂u′class
2

∂A2
+

∂u′class
3

∂A2

)

= 0, (56)

which leads to the following solution for the Ai:

A1 = u′class
1 , A2 = u′class

2 . (57)

From these expressions one can find A1 and A2 and plug
them into the effective superpotential (54). Doing so we
will get the same result as (38).



M. Alishahiha, H. Yavartanoo: On the multi trace superpotential and corresponding matrix model 581

4.2 Matrix model description

In this section we study the matrix model of the gauge
theory with multi trace operators. As it was shown in [15]
naively taking the W including a multi trace operator as
the potential of the corresponding matrix model would
lead to an incorrect result. And in fact we should work
with the linearized form of the superpotential. Therefore
we consider the U(M) matrix model with the following
cubic potential:

Wtree =
1
3

Tr
(
φ3)+

1
2

m′ Tr
(
φ2)+ λ′ Tr (φ) − gA1A2 .

(58)
This can be thought of as a matrix model with the single
trace potential while treating the Ai as constant back-
ground fields plus a shift of the form −gA1A2. For the
single trace part, the potential has two critical points a′

1
and a′

2 such that

W ′(x) = (x − a′
1) (x−a′

2) , a′
1,2 = −m′

2
± 1

2

√
m′2 − 4λ′ .

(59)
In the case where the gauge symmetry is not broken one
can take the following small fluctuations:

φ = a′
11M×M + ϕ , (60)

and therefore the potential of the matrix model reads

W (ϕ) = W (a′
1) +

1
3

Tr
(
ϕ3)+

1
2

∆′ Tr
(
ϕ2) , (61)

where ∆ = a′
1 − a′

2. We can now write down the Feyn-
man rules and thereby evaluate the free energy order by
order. Here we shall also consider the large M limit while
keeping gsM = S fixed. Thus only planar diagrams would
contribute. Basically using the single trace result as that
in Sect. 2 we find

F single
0 (A1, A2, S) = −1

2
S2 log

(
S

∆′3

)
+ S2 log

(
Λ

∆′

)

+
2
3

S3

∆′3

(
1 + 4

S

∆′3 + 28
S2

∆′6

)
(62)

up to 4 loops. Using this expression, the exact superpo-
tential is given by

W single
eff (A1, A2, S) = −NS

(
log
(

S

∆′Λ2

)
− 1
)

(63)

−2N

3
S2

∆′3

(
3 + 16

S

∆′3 + 140
S2

∆′6

)
.

Finally the effective superpotential for the multi trace
model can be found by integrating out A1 and A2 from
the total superpotential given by

Weff(A1, A2, S) = W single
eff (A1, A2, S) − gA1A2 , (64)

This, of course, is the same expression as (47) and thus
would lead to the correct answer. Therefore we might con-
clude that the linearized superpotential would give a cor-
rect matrix model for an N = 1 gauge theory with a multi
trace operator in the superpotential.

On the other hand for the case where the gauge group
is broken, we consider the large M U(M) matrix model
and take the small fluctuations as follows:

φ =
(

a11M1×M1 0
0 a21M2×M2

)
+
(

ϕ11 ϕ12

ϕ21 ϕ22

)
, (65)

with M1 + M2 = M . Therefore the gauge symmetry is
broken down to U(M1) × U(M2). We shall also consider
the large M1 and M2 limit while keeping S1 = gsM1 and
S2 = gsM2 fixed. Using the single trace result the matrix
model action is found to be

W =
1
2

∆′ (Tr
(
ϕ2

11
)− Tr

(
ϕ2

22
))

+
1
3
(
Tr
(
ϕ3

11
)

+ Tr
(
ϕ3

22
))

+∆′ (Tr (B21C12) − Tr(B12C21))

+ Tr(B21ϕ11C12 + C21ϕ11B12)

+ Tr(B12ϕ22C21 + C11ϕ22B21) . (66)

Therefore the matrix model free energy up to 4-loop reads

F0(A1, A2, S1, S2) = −1
2

∑
Si

2 log
(

Si

∆′3

)

+(S1 + S2)2 log
(

Λ

∆′3

)

+
1

3∆′3
(
2S3

1 − 15S2
1S2 + 15S1S

2
2 − 2S3

2
)

+
1

3∆′6
(
8S4

1 − 91S3
1S2 + 177S2

1S2
2 − 91S1S

3
2 − 8S4

2
)

+
1

3∆′9
(
56S5

1 − 871S4
1S2 + 2636S3

1S2
2 − 2636S2

1S3
2

+ 871S1S
4
2 − 56S5

2
)
. (67)

Having the explicit expression for the matrix model free en-
ergy with symmetry breaking as U(M) → U(M1)×U(M2),
one can find the effective superpotential W single

eff (Ai, Si)
for the gauge theory where the gauge group is broken as
U(N) → U(N1) × U(N2) by making use of (5). Then the
effective superpotential for the multi trace theory can be
obtained by integrating out the auxiliary fields Ai from

Weff(Ai, Si) = W single
eff (Ai, Si) − gA1A2 . (68)

To check the result one might consider the model with
N1 = 2 and N2 = 1 where the field theory result is known.
Doing the same analysis as before one can see that this
does give the correct answer.

5 Conclusions

In this paper we have studied N = 1 supersymmetric U(N)
gauge theory coupled to an adjoint scalar superfield with
a cubic superpotential containing a multi trace operator.
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Next we have looked for the corresponding matrix model
in the context of the Dijkgraaf–Vafa proposal.

Following [15] we have considered a matrix model whose
potential is given by the linearized form of the superpo-
tential of the corresponding gauge theory using some aux-
iliary fields. In this way the problem can be recast in the
form of the single trace case with, of course, coefficients
which now depend on the auxiliary fields. Using this matrix
model one can find the free energy and thereby the effec-
tive superpotential using the Dijkgraaf–Vafa proposal. At
the end we should integrate out the auxiliary fields finding
the final result of the exact superpotential for the theory
with multi trace in the tree level superpotential. As it was
noticed in [15] it is crucial when the auxiliary fields are
integrated out.

In this paper we have only considered the multi trace
operator with the form Tr(φ) Tr(φ2), while we could have
also considered other multi trace operators like (Tr(φ))3. In
this paper we have studied two different models: one with
gauge symmetry breaking and the other without gauge
symmetry breaking. In both cases we have seen that the
linearized matrix model does give the correct field the-
ory result.

In fact, one of our motivations for doing this project was
to find whether the Dijkgraaf–Vafa proposal can also be
applied to an exceptional group. We note, however, that
the tree level superpotential of a gauge theory with an
exceptional group has usually multi trace operators. For
example N = 1 supersymmetric gauge theory with gauge
group G2 can be obtained from N = 2 G2 SYM theory by
a tree level superpotential given by

Wtree =
m

4
Tr
(
φ2)+

g

6

(
Tr
(
φ6)− 1

16
Tr
(
φ2)3) . (69)

So the first step to study these theories is to increase our
knowledge of the physics of multi trace operators. We hope
to address this issue in the future.
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